A Compromise Model for Solving Fuzzy Multiple Objective Linear Programming Problems

نویسنده

  • Yan-Kuen Wu
چکیده

Two-phase approach had been proposed to generate an efficient solution for the multiple objective linear programming problems [MOLP]. In this research, we shall show a revised two-phase approach to the case of the fuzzy multiple objectives linear programming problems [FMOLP]. This revised model can improve the optimal decision obtained from min operator. Moreover, a compromise model embedded two-phase approach and average operator will be proposed to yield a fu zzy-efficient solution between non-compensatory and fully compensatory. More precisely, one compromise index to the membership function can be adjusted by decision-maker to reveal the way of change on degree of satisfaction for each objective and fuzzy constraint. One numerical example is employed to illustrate our assertions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...

متن کامل

A Compromise Decision-Making Model Based on TOPSIS and VIKOR for Multi-Objective Large- Scale Nonlinear Programming Problems with A Block Angular Structure under Fuzzy Environment

This paper proposes a compromise model, based on a new method, to solve the multiobjectivelarge scale linear programming (MOLSLP) problems with block angular structureinvolving fuzzy parameters. The problem involves fuzzy parameters in the objectivefunctions and constraints. In this compromise programming method, two concepts areconsidered simultaneously. First of them is that the optimal alter...

متن کامل

A Compromise Decision-making Model for Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming method is ba...

متن کامل

A New Method For Solving Linear Bilevel Multi-Objective Multi-Follower Programming Problem

Linear bilevel programming is a decision making problem with a two-level decentralized organization. The leader is in the upper level and the follower, in the lower level. This study addresses linear bilevel multi-objective multi-follower programming (LB-MOMFP) problem, a special case of linear bilevel programming problems with one leader and multiple followers where each decision maker has sev...

متن کامل

A new solving approach for fuzzy multi-objective programming problem in uncertainty conditions by ‎using semi-infinite linear programing

In practice, there are many problems which decision parameters are fuzzy numbers, and some kind of this problems are formulated as either possibilitic programming or multi-objective programming methods. In this paper, we consider a multi-objective programming problem with fuzzy data in constraints and introduce a new approach for solving these problems base on a combination of the multi-objecti...

متن کامل

A revisit of a mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers

In this paper fully fuzzy linear programming (FFLP) problem with both equality and inequality constraints is considered where all the parameters and decision variables are represented by non-negative trapezoidal fuzzy numbers. According to the current approach, the FFLP problem with equality constraints first is converted into a multi–objective linear programming (MOLP) problem with crisp const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002